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Abstract—This article proposes a hybrid path-planning
algorithm, the HE∗ algorithm, which combines the discrete
grid-based E∗ search and continuous Bernstein–Bézier (BB)
motion primitives. Several researchers have addressed the smooth
path planning problem and the sample-based integrated path
planning techniques. We believe that the main benefits of the
proposed approach are: directly drivable path, no additional
post-optimization tasks, reduced search branching, low computa-
tional complexity, and completeness guarantee. Several examples
and comparisons with the state-of-the-art planners are provided
to illustrate and evaluate the main advantages of the HE∗ algo-
rithm. HE∗ yields a collision-safe and smooth path that is close to
spatially optimal (the Euclidean shortest path) with a guaranteed
continuity of curvature. Therefore, the path is easily drivable for
a wheeled robot without any additional post-optimization and
smoothing required. HE∗ is a two-stage algorithm which uses a
direction-guiding heuristics computed by the E∗ search in the
first stage, which improves the quality and reduces the complex-
ity of the hybrid search in the second stage. In each iteration, the
search is expanded by a set of BBs, the parameters of which adapt
continuously according to the guiding heuristics. Completeness
is guaranteed by relying on a complete node mechanism, which
also provides an upper bound for the calculated path cost. A
remarkable feature of HE∗ is that it produces good results even
at coarse resolutions.

Index Terms—Bernstein–Bézier (BB) curve, graph search
algorithm, hybrid planner, motion primitives, path planning.

I. INTRODUCTION

PATH planning is a fundamental part of any autonomous
vehicle with sense-plan-act architecture. The most com-

mon scenario assumes path planning in a known environment
with obstacles that has been extensively studied in survey
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books such as [1]–[3]. Commonly used methods compute
collision-safe paths that are optimal in the sense of the shortest
distance or safety but they lack feasibility and therefore require
some post-processing to become drivable for a wheeled mobile
robots. However, there is no guarantee that a post-processed
path is also feasible. The environment is usually decomposed
to cells or representative sample points by some algorithm,
such as regular rectangular grid, quadtrees, random sampling-
based methods and the like [3]–[6]. Among those cells, an
optimal collision-free path is found that connects the current
robot pose and the goal location. The most commonly used are
grid-based planners (e.g., A∗) that usually return optimal set
of cell’s center points which may be connected by a sequence
of straight lines to arrive from the start to the goal location.
The resulting combined path does not have a continuous first
and second derivative, i.e., it belongs to C0 set of paths (con-
tinuity of position) and does not belong to C1 (continuity of
tangency) and C2 (continuity of curvature). This means that
by following the C0 path the robot would have step changes in
its orientation, while by following the C1 path it would have
step changes of its angular velocity. Therefore, the calculated
path needs to be smoothed to become C2 so that a wheeled
robot can follow it with smooth control actions. This is espe-
cially important in occupied and crowded environments where
any tracking error could result in a collision in a worst case.
Several smoothing approaches were proposed as follows. A
funnel algorithm is proposed by [7] to further optimize the
path inside the corridor defined by the cells comprising the
optimal path. For path optimization and smoothing inside the
corridor a fast marching method [8] can be applied or smooth
path generation using B-splines can be used as proposed
by [9]. Several path smoothing ideas use a local nonlinear
optimization around the path [10]–[13]. Sharp transitions on
the path, e.g., corners, are often smoothed to enable continu-
ous transitions by inserting parametric curves, such as circular
arcs [14], Bezier curves [15]–[18], clothoids [19], [20], or
higher-order polynomials [21], [22].

Path smoothing is often not integrated in path planning
but is usually done after the optimal path is found. This,
however, requires additional collision checks and can influ-
ence the path optimality [23]. Therefore, a better approach
in finding a smooth path is to combine motion primitives in
a path planning phase. The first studies to obtain the shortest
curvature-constrained smooth paths consisting of straight lines
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and circular arcs was performed by [24]. These paths belong to
C1 as they have a discontinuous curvature. Several local path
planners were proposed to find smooth path sections between
the initial and the target pose in obstacle-free space to obtain
a continuous and bounded curvature path [17]–[21], [25].
However, finding a collision-safe, smooth, and optimal path
in complex environments with obstacles remains a challenging
task.

High-dimensional motion planning for practical applications
has lately been addressed by randomized planners, such as the
probabilistic roadmap (PRM), the rapidly exploring random
tree (RRT, RRT∗) [26], [27], the kinodynamic RRT∗ [28], [29],
or stable-sparse RRT∗ [30]. The use of PRM and RRT is ben-
eficial in high-dimensional space since these algorithms use
random sampling of the space. However, these algorithms are
probabilistically complete, which means that with enough sam-
ples, the probability of finding an existing solution converges
to one.

Deterministic search techniques remain attractive due to
their guaranteed completeness (at fine-enough resolution) and
optimality for systems which can be modeled accurately by a
few dimensions such as wheeled robots [31]. Some approaches
reduce the search space by using a discrete set of motion prim-
itives to build a state lattice graph [32]. In the lattice graph
motion primitives are polynomials that are regularly arranged
to connect nodes (poses) of a discrete grid with smooth tran-
sitions of the curvature. Any graph search algorithm can be
used to search the lattice graph, such as A∗ [33], D∗ [34],
or the Euclidean shortest E∗ planner [35], [36]. To cope with
the complexity and feasibility challenges iterative search algo-
rithms can be used to fastly obtain the suboptimal solution,
such as ARA∗ developed by [37], AD∗ developed by [38],
and ANA∗ developed by [39]. Dolgov et al. [10] applied two-
phase planner where Hybrid A∗ algorithm produces C1 path in
the first phase that is locally smoothed in the second phase to
obtain a feasible path. In Hybrid A* the input commands are
discretized while the robot pose remains continuously defined
by simulating a robot kinematic model for a small period of
time corresponding to the resolution of the grid. To avoid
a huge searching graph and time-consuming path planning,
a discretized space is used to merge continuous states that
occupy the same cell. The recent usage of the Hybrid A*
algorithm combines a global search at lower resolution with
local search at a higher resolution to react to local changes in
the environment [40].

This article addresses a continuous path planning problem
where we suggest the path to be composed of Bernstein–Bézier
(BB) curves with continuous velocity and curvature transi-
tions. The obtained path can, therefore, be directly driven
by a wheeled mobile robot. Computational complexity of the
proposed continuous planner is lowered by guiding the search
toward directions obtained on grid-based search heuristics.
Resulting paths are smooth, collision-safe, feasible, and com-
puted in reasonable time which are all obtained directly in a
path planning phase. This allows faster driving velocities on
the planned paths.

The main contributions of this article are as follows. Fifth
order Bézier curve sections are formulated which can eas-
ily be applied to compose a C2 path in some path planning

applications. The curve sections are not defined as a fixed set
of motion primitives. Instead, they can easily adapt in terms
of their length and orientation to best fit the used heuristics
while overall combined path remains continuous in C2 and
thus drivable for a nonholonomic mobile robot. An application
of the proposed Bézier curves to path planning using a hybrid
continuous-discrete path planner is proposed. To increase its
computational efficiency the heuristics from the optimal grid-
based E∗ path planning is included. A result is the C2 path
that is in the vicinity of the shortest one with a guaranteed
completeness. Finally, some practical directions for obtaining
good path planning results at reasonable computational costs
for the proposed planner are given.

II. C2 PATH GENERATION

The resulting path in most path planning approaches is com-
posed of path sections which are continuously joined one after
another. Usually, the search is done in a discrete space by
discretization of all possible robot poses (e.g., grid-based rep-
resentation of an environment) to a finite set. The resulting
path, in this case, is connected by straight lines usually running
through the cell centers. Another commonly used approach is
to discretize input commands while the pose remains continu-
ously defined as it is usually done in continuous path planning
approaches (e.g., Hybrid A∗). The latter can be applied to a dif-
ferential drive robot which commands are linear velocity v(t)
and angular velocity ω(t). In each node (robot pose x, y, ϕ)
the path planning algorithm expands the search in a predefined
number of traveling curves obtained by setting some con-
stant translational and angular velocities, v(t) = vCONST and
ω(t) ∈ {ωMIN, . . . , 0, . . . , ωMAX}, respectively. The path sec-
tions therefore have a circular shape and the final robot pose
(x(tF), y(tF), and ϕ(tF)) at time tF = tS + �t is obtained by
integration

x(tF) =
∫ tF

tS
v(t) cos(ϕ(t))dt + x(tS)

y(tF) =
∫ tF

tS
v(t) sin(ϕ(t))dt + y(tS)

ϕ(tF) =
∫ tF

tS
ω(t)dt + ϕ(tS)

(1)

which exact solution is

x(tF) = x(tS)+ �s

�ϕ
(sin(ϕ(tS)+�ϕ)− sin(ϕ(tS)))

y(tF) = y(tS)− �s

�ϕ
(cos(ϕ(tS)+�ϕ)− cos(ϕ(tS)))

ϕ(tF) = ϕ(tS)+�ϕ

(2)

where tS is the starting time, tF is the final time, �t is the
time increment for the path section, �s = v�t is the trav-
eled distance, and �ϕ = ω�t is the change of the robot
orientation ϕ.

Such paths require infinite angular acceleration in the junc-
tion of two path sections as illustrated in the following
example. An example of a search expansion tree using cir-
cular paths [where x(0) = y(0) = 0 m, ϕ(0) = π/4 rad,
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Fig. 1. Search expansion obtained by using circular paths and BB paths.

v = 0.5 m/s, ω ∈ {−1,−0.5, 0, 0.5, 1} rad/s, and �t = 1 s] is
shown in Fig. 1 by dotted lines. To follow the path marked by
the thick dotted line in Fig. 1 the robot controls would need
to be discontinuous as shown in Fig. 2 which obviously is not
C2. Note that C2 paths have an identical angular velocity and
curvature at the junction, where the curvature is defined as
κ = (ω/v).

To have a feasible (C2) planned path for the robot BB
fifth-order curves are proposed as follows. Each BB curve fin-
ishes with final position and orientation that are calculated
by (2) for the fixed �s and �ϕ. The fifth-order BB curve
r(λ) = [x(λ), y(λ)]T which is defined by six control points
Pi = [xci , yci ]

T , i ∈ {0, 1, . . . , 5} is chosen as follows:

r(λ) = (1− λ)5P0 + 5λ(1− λ)4P1 + 10λ2(1− λ)3P2

+ 10λ3(1− λ)2P3 + 5λ4(1− λ)P4 + λ5P5 (3)

where λ is normalized time (0 ≤ λ ≤ 1) within one BB curve.
A combined path consists of more BB sections. The meaning
of the control points of each BB is as follows. The first three
control points (P0, P1, P2) are needed to obtain the C2 spline
and the last two (P4, P5) to have a desired final position and
orientation. Additionally, P3 sets the final angular velocity and
acceleration to zero which is needed to obtain the straight path
without unnecessary waving in cases where the initial and final
orientation are nearly the same. If the terminal angular velocity
of a BB curve is nonzero, then C2 conditions would require the
same velocities of the next BB curve which could not result
in a straight motion when the initial and final orientation are
the same.

The C2 spline is obtained by setting the following three
conditions:

lim
λ→1

rj(λ) = lim
λ→0

rj+1(λ)

lim
λ→1

drj(λ)

dλ
= lim

λ→0

drj+1(λ)

dλ

lim
λ→1

d2rj(λ)

dλ2
= lim

λ→0

d2rj+1(λ)

dλ2

(4)

saying that the end of the curve j and the start of the curve
j+ 1 as well as their first and second derivative are the same.

Fig. 2. Differential drive control signal to follow the thick path shown in
Fig. 1 obtained by circular paths and by BB paths (x-axis denotes cumulative
normalized time).

This defines the first three control points of the (j+ 1)th BB
curve Pi,j+1 (i ∈ {0, 1, 2}) related to the control points of jth
curve (Pi,j)

P0,j+1 = P5,j

P1,j+1 = 2P5,j − P4,j

P2,j+1 = 4P5,j − 4P4,j + P3,j.

(5)

The last two control points P5,j+1 and P4,j+1 are defined by
the final position [xj+1(1), yj+1(1)] and the final orientation
ϕj+1(1) calculated using (2)

P4,j+1 =
[

xj+1(1)

yj+1(1)

]
+ 1

5
v

[
cos(ϕj+1(1)+ π)

sin(ϕj+1(1)+ π)

]

P5,j+1 =
[

xj+1(1)

yj+1(1)

]
(6)

where in (2) substitute �s← �sj+1, �ϕ ← �ϕj+1, x(tS)←
xj+1(0), y(tS)← yj+1(0), ϕ(tS)← ϕj+1(0), x(tF)← xj+1(1),
y(tF)← yj+1(1), and ϕ(tF)← ϕj+1(1), respectively, and v is
the traveling velocity in the (j+ 1)th BB end point.

Zero angular velocity and zero tangential acceleration
requirement at the curve end are

lim
λ→1

dϕj+1(λ)

dλ
= 0, lim

λ→1
at,j+1 = 0 (7)

which defines

P3,j+1 =
[

xj+1(1)

yj+1(1)

]
+ 2

5
v

[
cos

(
ϕj+1(1)

)+ π)

sin
(
ϕj+1(1)

)+ π)

]
. (8)

Path expansion during the path-planning using BB curves
is shown in Fig. 1. Control points of the first BB curve
(the lowest curve in Fig. 1) are P0,j=1 = [x(0), y(0)]T ,
P1,j=1 = P0,j=1 + 0.2v[ cos ϕ(0), sin ϕ(0)]T , and P2,j=1 =
0.5P1,j=1 + 0.5P4,j=1 while P3,j=1, P4,j=1, and P5,j=1 are
defined considering relations (6) and (8). The obtained graph
tree of paths has a similar spread to the graph tree obtained
by circular paths but has a continuous second derivative of
the path which is not the case with circular paths as seen in
Fig. 2.
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The ability to obtain straight path sections can be easily
seen in the second path section (the middle part of the thick
curve in Fig. 1) which has the same direction in the start and
in the end of the section.

The obtained combined path is therefore feasible for the
robot to follow. It is smooth with continuous control velocities,
a continuous path curvature and is therefore appropriate for
drivable path-planning methods. The other curve-section plan-
ners, which are cited in Section I could also be applied to the
proposed HE* planner. They would provide similar results but
would be less computationally efficient and elegant. The use of
BB curve sections is simple as it is completely defined by two
parameters only, the distance and the orientation increment,
while the initial requirements are defined by the predecessor
BB section. They are suitable for describing simple shapes
similar to circular arcs. However, they cannot be used for com-
plex curves with several turns (unless more BB sections are
combined). Furthermore, they cannot be implemented as a sin-
gle primitive path planner as they need to be initialized by the
predecessor curve section to form a C2 combined path.

III. DRIVABLE PATH PLANNING USING

DISCRETE-CONTINUOUS SEARCH

This section details the proposed hybrid path planner idea.
The basic algorithm is illustrated by first using a fixed set
of motion primitives for expanding the path search. Then the
heuristics is introduced based on the discrete planner (E∗) to
obtain a more efficient search expansion and more suitable
resulting paths.

A. Concept of the Hybrid Search Algorithm

The implementation of the Hybrid E∗ algorithm (HE∗) with
the proposed C2 path sections is illustrated in Algorithm 1. It
is a two-stage algorithm, where in the first stage the E∗ algo-
rithm on a two-dimensional (2-D) gridmap is performed for
computing the heuristics for the second stage. Usually, the
heuristics is used in the graph search algorithms to narrow
the search around the optimal path. The most basic heuris-
tics is the Euclidean distance between the current node and
the goal node. Some algorithms use better heuristics that
are precomputed in advance by calling an additional lower-
dimensional (2-D) search and, thus, taking the obstacles into
account [10], [32], or to combine different heuristics to cap-
ture the high-dimensional complexity into account [41]. Here,
we use E∗ to approximate the shortest Euclidean distance con-
sidering obstacles, and additionally to guide the creation of
motion primitives. The second stage is the hybrid search with
motion primitives, which are used as the edges of the graph,
whose endpoints serve as the nodes of the graph. The search
graph is created while searching the nodes. Each node includes
parameters of a continuous BB path whose final pose defines
the node pose. The search starts from the start node, initialized
by the control points Pi (see Algorithm 1, line 2). The cal-
culation of successor nodes and their BB curves are obtained
using (5)–(8). Furthermore, each node includes the total cost,
which is the sum of the currently optimal cost-to-here and
the estimation of cost-to-goal (heuristics). HE∗ keeps track

Fig. 3. Hybrid search using fixed set of three C2 motion primitives.

of the currently expanded nodes by putting them on the so-
called OPEN list, where the node with the smallest total cost is
expanded by its neighbors and then removed from OPEN and
put on the CLOSED list. The node’s neighborhood is defined
by a set of curve sections which make constant distance �s
and orientation increments �ϕ according to equivalent circu-
lar arcs, e.g., (2). A fixed set of orientation increments {�ϕk}
is usually used in hybrid search, but in HE∗ variable orien-
tation increments are calculated according to guidance from
E∗. The search graph grows exponentially with the number
of iterations where some new opened nodes can have a pose
very similar to the existing ones. Even for a small number of
defined continuous motion curves (e.g., 5 motion curves as in
Fig. 1) and for a finite (bounded) environment the obtained
graph can be infinite (e.g., circular motion where the quo-
tient of its circumference and the curve length is irrational).
Therefore, nodes with a similar pose need to be eliminated to
obtain a manageable graph size as done in Algorithm 1, lines
15–23. A node in OPEN or CLOSED list is called a twin if
its position and orientation differs (to a new node candidate
for a search extension) for less than the defined thresholds. A
new node which has a twin is examined in the search process
only if its cost value is lower than the cost of a twin, other-
wise it is ignored. The selection of the thresholds influences
the search graph size, the computational complexity, and the
planning behavior. An example of appropriate threshold val-
ues for BB primitives with �s = 0.5 m is 0.15 m and 5◦
for distance and orientation, respectively. Smaller thresholds
result in a larger graph, an increased search complexity, and
a more detailed search. A higher threshold for orientation can
also cause some unwanted path oscillations where orientation
changes are bounded with the orientation threshold. This con-
cept is similar to [10], where instead of ignoring a twin node
similar nodes are merged into a discretized 3-D pose.

In Fig. 3 an example of the hybrid search using the fixed
set of motion primitives is shown. The obtained path is driv-
able for a wheeled robot because its path is C2 which also
follows from (4). However, there are several unnecessary
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Algorithm 1 Hybrid E∗ Search: C2 Path Search Based on E∗ Algorithm

Require: start position SP = [xSP, ySP]T and orientation ϕSP, end position
EP = [xEP, yEP]T , traveling velocity v, distance increment �s

1: E∗ search: planning and replanning from SP to EP computes the
cost-to-goal from each grid-node in the 2-D grid map

2: Initialize the start node SP with its control points Pi for calculation of suc-
cessor BB curves, cost functions CTH (cost-to-here), CTG (cost-to-goal),
COST = CTH + CTG (total cost) and search lists OPEN and CLOSED:

P0 ← [xSP, ySP]−�s[ cos ϕSP, sin ϕSP]T

P1 ← P0 + 0.2v[ cos ϕSP, sin ϕSP]T

P5 ← [xSP, ySP]T

P4 ← P5 + 0.2v[ cos(ϕSP + π), sin(ϕSP + π)]T

P2 ← 0.5(P0 + P5)

P3 ← 2P4 − P5
CTH← 0
CTG← heuristics(SP, EP)

COST ← CTH + CTG
parent_node← [ ]
Create new_complete_node with SP and BB parameters
OPEN ← [new_complete_node], CLOSED← [ ]

3: while goal EP is not reached or OPEN list is not empty do
4: Take the node from OPEN list which has the smallest COST , set it as

current_node and move it to CLOSED list
5: {�ϕk} ← compute_rotational_increments for current_node based on

E∗ path gradients and the node orientation ϕ(t)
6: Extend the search from current_node by computing new_nodes

positions using relation (2) considering distance increment �s and
rotational increments �ϕk

7: if current_node is complete node then
8: Extend the search also by new_complete_node using Alg. 2
9: Compute COST of new_complete_node and add it to OPEN:

�sC = length(new_complete_node)
CTH← current_node.CTH +�sC
CTG← heuristics(new_complete_node, EP)

COST ← CTH + CTG
parent_node← current_node
OPEN ← OPEN ∪ new_complete_node

10: end if
11: for all new_nodes do
12: Compute COST of new_node:

CTH← current_node.CTH +�s
CTG← heuristics(new_node, EP)

COST ← CTH + CTG

13: if current_node is complete node then
14: Mark new_node as a valid candidate
15: else if new_node has twin in CLOSED or OPEN then
16: if COST(new_node) < COST(twin) then
17: Mark new_node as a valid candidate
18: else
19: Mark new_node as an invalid candidate
20: end if
21: else
22: Mark new_node as a valid candidate
23: end if
24: if new_node is valid then
25: Compute BB path for new_node using (5)–(8)
26: if new_node and its path is collision safe then
27: Add new_node to OPEN:

parent_node← current_node
OPEN ← OPEN ∪ new_node

28: end if
29: else
30: Ignore new_node
31: end if
32: end for
33: end while
34: if goal EP is reached then
35: Return C2 path by backtracking the parent nodes from the goal
36: else
37: C2 path to EP does not exist
38: end if

turns that appear due to the use of the fixed set of BB sec-
tions (motion primitives) during the path search and the goal
cannot be reached exactly. In the presented case each node
has three successor nodes which are accessed through one
straight path (�s = 0.5 m, �ϕ = 0 ) and two curve paths
(�s = 0.5 m, �ϕ ∈ {−1,+1} rad). In the following, we will
explain the direction guiding heuristics from E∗ and a variable
motion primitives determination which both further improve
the hybrid search.

B. First Stage—Brief Overview of E∗ Search

E∗ algorithm produces the approximation of the shortest
Euclidean distance costs from each node in the environment
to the goal [35]. An example of the paths obtained by the E∗
algorithm for a discrete set of nodes by following the steepest
negative cost gradient with a small step size corresponding to
the grid resolution is given in Fig. 4. E∗ has the same com-
plexity as the A∗ algorithm, but it starts the search from the
goal node like the D∗ algorithm (the dynamic version of A∗),
and inherits the fast replanning capability of the D∗ algorithm,
which is applicable in dynamic real-world environments.

The basic idea is to use those path gradients for a more effi-
cient search expansion of the HE∗ algorithm, where from the
current node the search expands mostly in the directions of the

gradient resulting from the vector field of the E∗ algorithm.
Additionally, the cost at each node produced by the E∗ algo-
rithm is used for the cost-to-goal in the HE∗ algorithm as
admissible heuristics (lines 2, 9, and 12 in Algorithm 1).

The E∗ algorithm uses the interpolation based on the level
set method [42] to produce the approximation of the shortest
(Euclidean) distance from every cell in the search space to
the goal. A numerical value is assigned to each cell by the
so-called wavefront propagation over the free cells in the grid
map. The wavefront propagation acts like a continuous contour
that sweeps from the goal node outwards and at each cell
record the crossing time. Therefore, the crossing time at cells
can be considered as samples of continuous cost function. The
path cost at each cell can be calculated by dividing the crossing
time by the speed of the propagation.

Unlike the D∗ or A∗ algorithm, where each searched node
has one parent node that determines its cost, the E∗ algorithm
uses up to two parent nodes that are used for the calcula-
tion of the interpolation cost. Each node has four neighbors in
the orthogonal (x, y) directions, and parent nodes are always
orthogonal to each other (close to obstacles only one parent
may exist). If we denote the cost of the node N as T and the
costs of the parent nodes A and B as TA and TB, respectively,
where A ≡ B if only one parent exists, then the gradient of
the path from any point within the node N is parallel to the
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Fig. 4. E∗ algorithm. Obtained path gradients from each node (x-mark) can
be used to further optimize the path using the HE∗ algorithm. Note that path
gradients are obtained from an arbitrary location inside the node.

vector −→p determined as

−→p = (T − TA) · −→NA+ (T − TB) · −→NB (9)

where
−→
NA and

−→
NB are vectors connecting the corresponding

node positions.

C. Second Stage—Direction Guiding Heuristics

Proper guiding heuristics, if available, can greatly improve
a path planning performance. The simplest solution (without
guiding heuristics) is to have path sections fixed by setting
desired orientation increments �ϕ and traveled distance incre-
ment �s (approximated by a circular arc). This may result in
a suboptimal path (as seen in Fig. 3) if the needed optimal
driving direction is different from those available in the fixed
set. A good and simple strategy is also to append the new
driving direction directly to the goal if the goal is reachable
with a straight-line motion. In case of an unreachable goal one
can add driving directions toward the corners of the obstacles
which are in-between the current pose and the goal (as in
any-angle path planning [43]). This, however, is not so trivial
to program and could result in many new driving directions
(they grow quadratically with the number of corners) which
would make the search more extensive and computationally
expensive.

A good choice to obtain a smooth, close-to-optimal and
computationally effective path search is to consider driving
directions obtained from the pre-executed straight-line-path
search as informative heuristics [32]. Preplanning can also
be done by discrete grid search, such as A* or Dijkstra’s
algorithm if the search starts from the goal and expands in
the neighborhood using cost-to-hear only. The result is a set
of optimal straight-line-paths from any node toward the goal
node. For any node an optimal driving direction (heuristic
for HE*) is then defined by a vector toward its parent node.
However, due to 8-neighbor or 4-neighbor connected cells

Fig. 5. Determination of orientation increments �ϕk for HE∗ heuristics.
Desired directions ϕ(t) + �ϕk in the current node P(t) of HE∗ search are
marked by solid vectors.

(nodes) in the graph search A∗ is not the most appropriate
selection for HE∗ heuristics as its directions are limited to
multiples of 45◦ or 90◦. The path gradient of E∗ algorithm
can serve as much better heuristics since the path of E∗ algo-
rithm approximates the shortest Euclidean path, as can be seen
in Fig. 4. The direction of the gradient vector at the current
location (in HE∗ search) can be determined by first locating
which cell N (in E∗) the current location belongs to and then
applying (9). For a more extensive search, which also affects
the resulting path smoothness, also directions of the gradient
vector at further parent nodes of the cell N can be used. In
general, it is good to choose the direction of the further parent
node at the distance �s from the current location to prevent
the sharp changes of the path direction.

The desired orientation increments �ϕk (k ∈ {−1, 0, 1})
needed to expand the search toward the gradient of the path−→p as follows:

�ϕk = ∠−→p + k · η − ϕ(t) (10)

where η is a small orientation change (e.g., 15◦ left and right
from the desired direction) to allow deviations from the desired
path gradient (or from the average of the desired gradient
directions if also directions from the further parent nodes are
used), and P(t) and ϕ(t) are the current position and the ori-
entation of the searched node pose, respectively (see Fig. 5
for details).

Computed increments �ϕk are used in Algorithm 1 (line 5).
If the goal node is visible from the current node of the search,
then the desired orientation increment in (10) is replaced by
the direction toward the goal.

The resulting path obtained using the proposed C2 path
expansion based on the expansion directions obtained from
E∗ algorithm is shown in Fig. 6. Due to the considered gradi-
ents from Fig. 4 the smooth C2 path can be found with less
iterations while the solution is also closer to the optimal one
than in Fig. 3.

Although in each node of HE∗ the motion primitives are
generated mostly along the gradient [see Fig. 5 and (10)] given
by heuristics this does not imply that other directions are not
explored. The search is directed in the direction of the gradient
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Fig. 6. C2 path expansion based on the directions from E∗ algorithm.

as well as in the directions ±η away from the gradient (or
even more directions, e.g., ±η and ±2η). This means that also
this additional directions are explored during the search. By
introducing the complete motion primitives (see Section III-E)
that pass through the cells along the gradient it is ensured that
a narrow passage is never missed if the path through it is the
cheapest.

To apply HE∗ in a partially known environment the algo-
rithm would require modifications such as an iterative search
algorithm (ARA∗ [37] and ANA∗ [39]) or a reversed search
from the goal to the start node as is the case with dynamic
search algorithms (D∗, AD∗ [38]). Since E∗ inherits dynamic
properties of D∗, the gradients used by HE∗ will change
around the newly detected obstacle. This requires a new search
expansion by BBs from the cells with changed gradients back-
wards to the current robot position, while the search tree
behind the new obstacle to the goal is still valid and does
not need recalculation. Note that the presented path planning
can still be efficiently applied to partially known environments
where the first stage with E* already replanes efficiently while
the second stage of HE* needs to recompute the path from
the start to the goal when the environment changes. Since the
second stage has a relatively low number of nodes this is not
computationally critical.

D. Final Orientation

The path planning algorithm presented above arrives in a
goal position with an orientation which is implicitly defined by
the resulting path. When the search is sufficiently close (e.g.,
less than �s) to the goal and the goal is reachable, the final
node and its BB is computed to arrive in goal position exactly.
If some desired goal orientation is required, it can easily be
achieved by stopping the robot and rotating on the spot. When
a smooth robot motion is preferred, the following approach
can be used. The described planning heuristics needs to be
updated to achieve the desired goal orientation. Here, an idea
of an intermediate direction similar to the one proposed by [44]
is used. When the current search is sufficiently close to the
goal (D < Dshift, Dshift is a design parameter), the orientation

Fig. 7. Achieving a final orientation using an intermediate direction shift.

increments �ϕk in (10) need to be computed from the shifted
gradient orientation for an angle γ (modify ∠−→p ← ∠−→p +γ )

γ = ϕr(t)− ϕ(t)+
{

α, if |α| < |β|
β, otherwise

(11)

where ϕ(t) is the current orientation of the search, ϕr(t) is
the orientation of the vector from the current search position
toward the goal, and α = ϕr(t)− ϕEP

β =
{

arctan r
D , if α > 0

− arctan r
D , otherwise

(12)

ϕEP is the goal orientation, D is the distance from the current
search position to the goal and r > 0 is a design parameter
[ensure (xr, yr) is in free space] as illustrated in Fig. 7.

The basic idea is that ϕr(t) is shifted by the intermediate
direction β in the direction away from the goal orientation
ϕEP when the robot is far from the goal and for α when being
close to the goal. This switch between β and α is smooth. This
implies that the path heading is forced toward the goal point
and the path arrives there with the desired goal orientation.

E. Completeness and Optimality

With discrete systematic search planners which keep a list
of visited nodes and operate on a finite graph, completeness,
and optimality are easily achieved [3]. However, a continuous
search needs to prevent infinite search of state space by the
use of action commands which are discretized and the obtained
continuous states need to be merged to a finite set. Therefore,
the completeness guarantee is usually lost because some con-
tinuous branches are pruned and optimality is not guaranteed
because reachable state space is changed [10], [45].

Our approach uses a discrete E∗ algorithm which is com-
plete and optimal [35] to compute the guiding heuristics for
the HE∗ search. Therefore, an existing path for a given resolu-
tion can always be found by E∗. Moreover if the HE∗ search
can follow the prescribed gradient within the cells where the
gradient is defined, then HE∗ is also complete. To achieve this,
each BB motion primitive needs to start on the cell border and
exit on the other cell border of the same cell in the direction of
the gradient. The entire motion primitive is always inside the
cell which is guaranteed by considering a convex hull property
of the BB curve. The latter states that a BB curve is always
inside the convex envelope of its control points (Pi) and thus
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Fig. 8. Illustration of search extension with a new complete node.

also inside the cell provided that Pi are selected to be inside
the cell. Let us name such a node the complete node.

During each HE∗ search at least one branch needs to lie
entirely inside the cells along the gradient to achieve com-
pleteness. Moreover, its nodes must not be eliminated even if
there exist twins in OPEN or CLOSED lists.

The resulting path using original nodes only results in a
nice drivable path but without a completeness guarantee. In
practice a reachable goal is almost always found using orig-
inal nodes only if the BB length is at most equal to a half
of the cell size (�s ≤ (1/2R)). However, adding the com-
plete nodes ensures that narrow passages are not missed with
the original nodes expansion. On the other hand, the search
consisting of only complete nodes is always complete, how-
ever, the resulting path tends to have sharp turns (e.g., in areas
around obstacles where the gradient changes abruptly) because
it needs to follow the gradient and stay inside the discrete cells.
Therefore, we propose a combination of the two to preserve the
completeness property and obtain good quality drivable paths.
The obtained path quality is lower bounded by the solution
that would consist of complete nodes only. A brief explana-
tion of node extension during HE∗ search is as follows. A start
node is initialized as a complete node. During the search each
complete node has original child nodes with prescribed dis-
tance increment �s and orientation increments �ϕk according
to (2) and one complete node. Original nodes have only orig-
inal child nodes provided that there is no twin between the
original nodes in OPEN or CLOSED lists. An original child
node or a complete child node must not be eliminated if their
parent is a complete node and therefore at least this path to
the goal is always found if it exists. Due to the original nodes
in HE∗ the optimal path is mostly found consisting of original
nodes only or of combinations with complete nodes.

The details on complete node definition are explained in
Algorithm 2 and Fig. 8. From a given current node the search
extends to a new complete node whose BB path must lie inside
its discrete E∗ counterpart cell (Cellj+1). The entry point S in
Cellj+1 is the current node end point (P5,j). Gradient −→p in
Cellj+1 guarantees a safe and optimal driving direction for
this cell. Therefore, the exit point E on another edge of the

Algorithm 2 Complete Node Determination
Require: current_node ← nodej, its control points Pi,j, (i ∈ 0, 1, · · · , 5)

and its associated cell in E∗ Cellj. Used parameters: cell size C, minimal
line-of-sight distance dFREE , ( C

2 < dFREE < C√
2

), minimal distance

from vertex ε, (0 < ε < C
2 ) and relative distance ρ, (ρ < 0.25 ) between

control points
1: Set entry point for new_complete_node← nodej+1 as S← P5,j
2: if S is inside Cellj then
3: new_cell← Cellj
4: else
5: new_cell← Cellj+1 is neighbor sharing the same edge with Cellj
6: end if
7: −→p ← gradient(new_cell)
8: Compute exit point E on new_cell border, defined by intersection of the

straight line from S following −→p and appropriate edge of new_cell
9: if ||S− E|| < dFREE then

10: Compute exit point E2 of the next cell (Cellj+2) with gradient −→p2 ←
gradient(Cellj+2). E2 is defined as intersection of straight line from
E following −→p2 and the appropriate edge of Cellj+2

E← E2
new_cell← new_cell ∪ Cellj+2

11: else
12: if ‖E− V‖ < ε then
13: move E for ε from V (E← V+ E−V

‖E−V‖ ε)
14: end if
15: end if
16: Compute BB path for new_complete_node:

P0,j+1 ← S

P1,j+1 ← S+ P5,j−P4,j
‖P5,j−P4,j‖ ‖E− S‖ρ

P2,j+1 ← S+ P5,j−P4,j
‖P5,j−P4,j‖ ‖E− S‖2ρ

P3,j+1 ← E− (E− S)2ρ

P4,j+1 ← E− (E− S)ρ

P5,j+1 ← E

17: if P2,j+1 is not inside new_cell then
18: Find ρN (ρN < ρ) and recompute

P1,j+1 ← S+ P5,j−P4,j
‖P5,j−P4,j‖ ‖E− S‖ρN

P2,j+1 ← S+ P5,j−P4,j
‖P5,j−P4,j‖ ‖E− S‖2ρN

to become inside new_cell
19: end if

cell is obtained by drawing the line from S in the direction of−→p . This then defines the last three control points (P5,j+1 = E,
P4,j+1, and P3,j+1) with distance ‖E−S‖ρ among them. They
always lie inside the cell if ρ < 0.25. The first three con-
trol points (P0,j+1 = S, P1,j+1, and P2,j+1) are defined by
the current node final position and orientation. The newly
obtained BB curve preserves C2 continuity with the previous
one because it meets the requirements (4) and (7). To ensure
that the computed BB curve is entirely inside Cellj+1, the
location of P1,j+1 and P2,j+1 also needs to be verified. If
P2,j+1 is outside the cell, then the relative spacing (ρ) among
P0,j+1, P1,j+1, and P2,j+1 is decreased to be within the cell.
To improve the BB appearance additional two parameters are
defined: dFREE and ε, respectively. The first extends the new
complete node on the next discrete cell in case of a short BB
(||S − E|| < dFREE, line 9 in Algorithm 2). The second one
lowers the curvature in sharp turns of the curve by moving the
curve away from the vertex V (lines 12–14 in Algorithm 2).
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As shown the proposed HE∗ is guaranteed complete but
is not guaranteed to find a globally optimal solution for the
continuous state space. It applies the discretization of the
input space to explore the continuous space with a finite set
of nodes and a continuous-state branch pruning where nodes
which have twins and higher path cost are not explored. The
obtained solution improves by increasing the number of itera-
tions (by lowering the twin thresholds) and by increasing the
number of children [with finer orientation increments in (10)]
in each node expansion. It can better follow the E∗ gradi-
ent which is approximate for a given resolution R. Closer to
optimal solution it therefore also requires finer resolution of
E∗. However, HE∗ is guaranteed to find the optimal path inside
the build lattice graph obtained during its search. Nevertheless,
the produced solution is inherently drivable and it lies in the
neighborhood of the global optimal one.

IV. RESULTS AND COMPARISONS

The proposed HE∗ is compared to the state-of-the-art
kinodynamic planning algorithms: to the Hybrid A∗ (HA∗),
SSTand lattice planner from the SBPL package that uses
ARA∗, AD∗, and ANA∗ iterative search algorithms. Algorithm
results are measured in terms of path length L, optimal driving
time along the planned path T , and the number of explored
nodes N. The robot is considered as a point in its center of
rotation, while obstacles are enlarged for the robot’s dimen-
sions. The optimal time to drive along the planned path is
estimated by using the procedure presented in [46] consider-
ing acceleration bounds for translation at ∈ [−2, 2] m/s2 and
rotation ar ∈ [−1, 1] m/s2 and control bounds v ∈ [0, 1.5] m/s,
and ω ∈ [−2.5, 2.5] rad/s.

The HA∗ algorithm [10] uses a similar principle to the
proposed HE∗ algorithm, with the precomputed heuristics to
account for obstacles in the environment and additional heuris-
tics to account for holonomic constraints of the vehicle. HA∗
expands the search tree by using three Reeds-Shepp (RS)
curves: a straight line, and left and right turns by a speci-
fied angle. The continuous states created by this expansion are
merged into a discrete state (x, y, ϕ). The length and turning
angle of RS curves defines the complexity of the search. If the
length and the angle of RS curves are close to the discretization
step, i.e., the size of a grid cell and the resolution of the orien-
tation, it may result in frequent merging of several continuous
states within the same discretization step into a single discrete
state. Therefore, the resulting path can have discontinuities at
the merging locations. On the other hand, if the length and
angle of RS curves are larger than the discretization step, the
search is guided completely by the heuristics, less states are
searched, and merging of similar states is avoided.

The SSTalgorithm [30] is a stable sparse version of the RRT
algorithm, which is able to achieve asymptotic near-optimality
while maintaining a sparse data structure. Motion primitives in
SSTare random kinodynamic trajectories generated iteratively
as the tree expands according to the randomly chosen con-
trol applied during the randomly chosen time of propagation.
SSThas a property of probabilistic completeness. SBPL algo-
rithm is a search algorithm for the state lattice graph. Motion

primitives in SBPL are a deterministic and fixed set whose end
points are snapped to discrete states. For each state there exists
a function for getting predecessors (or successors), which cre-
ates them always uniquely. The whole lattice graph is not
constructed in advance, but iteratively during states expan-
sion to minimize the memory and computation requirements.
SBPL is proven to be complete and optimal. Like SBPL and
SST, HE∗ also creates a search graph during states expansion.
Motion primitives are dependent on the continuous expanded
state and E∗ heuristics. It is complete but not optimal since
we do not have a unique search tree. HE∗ path planning algo-
rithm is implemented in MATLAB, whereas HA∗ [47], SST,
and SBPL package are implemented in C++. Comparisons
are made on a personal computer with a dual-core processor
(i7-7600U) at base frequency of 2.9 GHz.

We conducted two tests on three obstacle configurations
maps of size 10 m × 10 m (U-shape map, S-shape map, and
Corridor map). The first test examines the influence of the
graph resolution R (the number of cells per meter) on the path
planning performance. Here, only SBPL and HE∗ are com-
pared since SSTand HA∗ are continuous algorithms without
optimality guarantee. The second test compares all the algo-
rithms for the best-tuned parameters. In the presented results
the length of the HE∗ paths is estimated numerically where
each BB curve in the path is split to several segments (e.g.,
100) and the obtained segments lengths are summed.

For the experiments we used an SBPL algorithm with states
represented as (x, y, ϕ), where (x, y) are discrete coordinates
of the cells in the 2-D grid map, and ϕ is one of the 16
directions of the robot’s orientation as a suggested parame-
ter for the motion primitives calculation. For such a setup
three search algorithms can be used: 1) the anytime repair-
ing A* (ARA∗) developed by [37]; 2) the anytime dynamic
A* (AD∗) developed by [38]; and 3) the anytime nonpara-
metric A* (ANA∗) developed by [39]. All three algorithms
are iterative, which means they compute a suboptimal solu-
tion fast and then improve it iteratively until the optimal one
is found. AD∗ is developed for dynamic environments and
searches more efficiently in case of changes that happen in
the environment. Both ARA∗ and AD∗ behave identically in
static known environments if suboptimality parameter ε is ini-
tially set to the same value. If the user sets some value ε > 1,
the heuristics are proportionally increased and a suboptimal
solution is computed fast. The algorithm decreases the param-
eter ε in all further iterations until it reaches value 1. If the
user sets the initial value ε = 1 both algorithms produce the
optimal solution in the first iteration. ANA∗ calculates the first
suboptimal solution in a shorter time and is fast in improving
the solution without setting the initial value for ε, i.e., it is
calculated automatically.

In the first test, we compared HE∗ and SBPL by varying
resolution of the grid and consequently the search space of
SBPL since the discrete states are built upon the 2-D grid
map. The results are given in Table I and the planned paths
are presented in Fig. 9. The Corridor map has a one-cell wide
passage at the lowest resolution of R = 2. Here, we chose to
present the optimal solution of SBPL, and we chose the fastest
AD∗ executed with parameter ε = 1. AD∗ is executed in the
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Fig. 9. Robot planned paths for the HE∗ (upper row) and SBPL (lower row) algorithm in three different maps of size 10 m × 10 m: the U-shape (left), the
S-shape (middle), and Corridor (right), where the grid resolution varies for R ∈ {2, 4, 10, 20, 40}.

Fig. 10. BB tree searched by HE∗ in the U-shape (left), S-shape (middle), and Corridor (right) map, for R = 2 and BB length 0.25 m, with the noted grid
cells (squares), searched nodes (x-mark) as end points of the regular BBs (a thin curve) and complete BBs (a thick curve), and the final path (a dashed line).

backward direction, i.e., the search starts from the goal state.
The search can be started in the forward direction, i.e., from
the start, and the same optimal cost of the path will be found,
although the path can be slightly different since there exist
more equal cost solutions. Every motion primitive in SBPL is a
trajectory of ten interpolated points. From each state there exist
six motion primitives: long and short straight-line trajectories,
circular-arc trajectories with a positive and negative orientation
increment, and turn-in-place trajectories with a positive and
negative orientation increment. Motion primitives mostly have
the length of 8 cells, except the short straight-line trajectory,
which has the length of 1 cell, and the turn-in-place trajectory
of length 0. This means that by changing the resolution of

the grid map the motion primitives change their length. For
resolutions 2 and 4 motion primitives are too long for the given
obstacle configurations and there only exists a solution with
short straight-line and turn-in-place trajectories. Therefore, for
R = 2 and R = 4 we changed motion primitives to have the
length of 3 cells to obtain better results. On the other hand,
fewer nodes are searched with 8 cells long motion primitives
for higher resolution than with 3 cells long motion primitives,
which is expected since fewer primitives exist in the same area.
Each of 6 motion primitives has an additional gain factor so
that, e.g., turn-in-place trajectory can be penalized more than
straight-line and/or circular-arc trajectories. Then, the optimal
solution is a longer trajectory with the minimal number of
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TABLE I
COMPARISON OF HE∗ AND SBPL ACCORDING TO THE MAP

RESOLUTION AND OBSTACLE CONFIGURATIONS

turns in place. If the gain factor for a turn-in-place trajectory
is set to zero, then the optimal path is the shortest possible
straight-line segmented path with turns in place at the path
direction changes. However, this path has a longer driving time
and we chose the equal value of gain factors for a straight-line,
circular-arc, and turn-in-place motion primitive. Although all
path lengths in Table I are very similar, it can be seen in Fig. 9
that for a lower resolution the path has some turn-in-place
points and a slower driving time.

In this test, we fixed the length of BB of HE∗, which is
defined with the parameter �s (see Section II) for all map
resolutions to �s = 0.25 m. It is chosen to be a half of the
cell size at the lowest resolution of R = 2 to be sure not to
overshoot the one-cell wide narrow passage in the Corridor
map (although the complete BB always ensures that the tra-
jectory through the passage exists, we want to have more BB
to search). In general, by decreasing the length of BB, HE∗
will produce a shorter path as it can better track the guiding
heuristics, but this results in sharper turns (though still smooth)
around obstacles and consequently takes a longer time to drive
along the path. The search tree of BBs by HE∗ is presented
in Fig. 10. It can be seen how some parts of the optimal path
contain complete BBs (black curves) where rectangles denote
discrete E∗ cells opened during the complete nodes extensions.

The influence of the length of BB on the path quality for the
fixed resolution R = 10 can be seen in Table II and Fig. 11,
where the smallest BB length (�s = 0.05 m) produces the
shortest path, even shorter than the path obtained with the
resolution R = 20 (Table I) but the number of the explored
nodes is much higher since it depends on the BB length. On
the other hand, the time to travel along the path is much higher
for a smaller BB length (Table II: T = 14.5 s for BB length of
0.05 m) than for the similar length path of a higher resolution
R (e.g., Table I: T = 11.25 s for R = 40 and BB length
0.25 m), which is due to the fact that a shorter BB has higher
curvature values.

TABLE II
INFLUENCE OF THE BB LENGTH ON THE PLANNING PROCESS OF HE∗

Fig. 11. Robot planned paths with HE∗ in the S-shape map of resolution
R = 10 with various BB length.

Comparing the results in Table I and Fig. 9 for equal res-
olution our method produces a shorter path and less time to
drive the path than SBPL algorithm. HE∗ creates a graph of
BBs focused around the optimal path of the E∗ graph search
algorithm on the 2-D grid map and therefore searches a signifi-
cantly lower number of nodes comparing to SBPL, which uses
a 3-D search of motion primitives. The number of the searched
nodes in the HE∗ algorithm does not depend so much on the
2-D grid map resolution but more on the node elimination
criterion and the number of the used BBs in each node expan-
sion. In the presented test, we used four BBs at each node
expansion according to (10) also including an additional gra-
dient of the path from the further parent node distanced for the
BB length from the current node of the search, as explained
in Section III. On the other hand, SBPL works better at a
higher resolution grid, while at a lower resolution (R ≤ 10)
the computed path has some turn-in-place points, where the
robot does not move translationally but only rotates on spot.
Furthermore, SBPL uses discretization of nodes according to
the 2-D grid and a finite number of fixed orientations, so the
search will never reach the exact continuous-coordinate goal
state. The proposed algorithm HE∗ finds the path between the
continuous-coordinate start and goal, as can be seen in Fig. 9.

The comparison of HE∗, HA∗, SST, and SBPL algorithms is
given in Table III and Fig. 12. HE∗ is executed with BB length
0.25 m and a grid map resolution 2. HA∗ is executed with
RS length 0.25 m, RS angle 25◦, grid map resolution 8, and
orientation resolution 5◦. In SST, we omitted the orientation
at the goal state by removing the orientation from the cost
function and the random tree generation stops when the goal
area is reached (0.5 m around the goal is set since, in general,
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Fig. 12. Planning with: 1) HE∗; 2) HA∗; 3) SST(first iteration); 4) SST(final
solution); 5) SBPL ANA∗ (first iteration); 6) SBPL ANA∗ (final solution);
7) SBPL AD∗ (first iteration); and 8) SBPL AD∗ (final solution) in three
different maps (10 m × 10 m): U-shape (left), S-shape (middle), and Corridor
(right).

a dynamic system cannot reach a target state exactly). We
needed to tune several parameters of the SSTto obtain the best
behavior in given environments: the lower and upper bound

TABLE III
ALGORITHM COMPARISON ON THREE DIFFERENT MAPS

of the trajectory propagation time is set from 40 to 110 s; the
radius for BestNear is set to 0.2 m; the radius for sparsification
is set to 0.1 m; and the final solution termination is set to be
after 30 s. SBPL is executed with the resolution 10 of the
grid map so that lattice graph can be clearly seen, although a
higher resolution is preferred and the lattice graph is denser. In
SBPL we could not omit the orientation at the goal state since
it determines the state in the lattice graph. Since we are testing
a static environment scenario, both ARA∗ and AD∗ behave
identically, so only AD∗ and ANA∗ are presented. Both AD∗
and ANA∗ are executed in the backward direction, i.e., the
search starts from the goal state. All three iterative algorithms
are tested according to the first and the final solution found.
ε for AD∗ is set to a default value 3 for the suboptimal first
solution and to a value 1 for the final solution.

As can be seen in Table III ANA∗ has a longer search of
the final solution than AD∗ (more explored nodes), which
is expected since we set ε = 1 for the optimal solution
of AD∗ so there is only one iteration for finding the solu-
tion and fewer nodes to be searched than when iteratively
searching the optimal solution. Searching the optimal solu-
tion with SBPL (Fig. 12) results with a dense tree of motion
primitives, while searching the first suboptimal solution with
ANA∗ has 100 times fewer nodes than AD∗. Trajectory lengths
for optimal solutions of AD∗ and ANA∗ are not equal since
costs of turn-in-place trajectories ware also included in the
path optimization to have a better driving time T . SSThas the
worst first solution (the longest path) but has a close-to-optimal
length of the final solution and a relatively low number of the
explored nodes, although the tree propagation is very costly
(the algorithm ran for 30 s). HA∗ results in a low path length,
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Fig. 13. Example of a random environment (experiment 16 in Fig. 14) with
a 50% obstacle density and a pair of start-goal with the obtained paths by
HE∗, HA∗, SBPL-AD∗ , and SST.

Fig. 14. Comparison of the path lengths L, the driving times T , and the num-
bers of searched nodes N obtained with HE∗, SST, and AD∗ on randomized
environments.

and a minimal number of the explored nodes. However, due
to the constant RS angle it yields high-curvature paths. Tests
with RS angle of 15◦ produce smoother but longer paths, while
very tight spaces (e.g., Corridor map) require RS angle to be
30◦. HE∗ has a similar path to the optimal path of SBPL
and a lower number of the explored nodes. It can also be
used in dynamic environments since heuristics calculated by
E∗ can be incrementally updated as environment changes, i.e.,
E∗ performed from the goal node (backward search) preserves
dynamic properties inherited from the D∗ algorithm.

TABLE IV
COMPARISON OF HE∗ AND SST NORMALIZED WITH THE VALUES

OBTAINED WITH THE SBPL-AD∗ ALGORITHM

Fig. 15. Three planned paths at the department map obtained by the HE∗
algorithm. The start of each trajectory is noted by o-mark and a common goal
by �-mark.

A more detailed statistical comparison is performed on a
set of randomized environments of size 20 m × 20 m with
randomly selected start and goal locations and different obsta-
cles densities (20%, 30% and 50%). HE∗ is compared to
SBPL-AD∗ and SSTwhich performed the best in previous
comparisons shown in Fig. 12 and Table III. Both SBPL-AD∗
and HE∗ run on a grid map of the resolution 10. An example of
a random environment with a 50% obstacle density is shown
in Fig. 13. Although HA∗ is presented in Fig. 13, it is not com-
pared further since it produces longer paths than SBPL, and
different obstacle configurations require different turning angle
of RS curves. Results obtained in 19 randomized environments
are shown in Fig. 14. Table IV gives statistic performance
measured in terms of mean, standard deviation, minimal and
maximal values of normalized results where HE∗ and SSTare
normalized with AD∗ result values. The performance of HE∗
is similar to AD∗ for L and T but explores a much lower
number of nodes while AD∗ performs better in environments
where obstacles do not require sharp turns. SSTperforms the
worst and would require many more iterations to converge to
the other two planners. A comparison of execution times is not
provided due to the different implementation and optimization
of the algorithms. Therefore, the algorithm complexity is
rather measured in terms of the explored nodes which is more
fair. However, it needs to be mentioned that SST has a more
expensive nodes expansion calculation since randomly gener-
ated trajectories consist of 50 000 points in average (an average
duration of 100 s divided by the sampling time of 0.002 s),
while SBPL motion primitives consist of ten points, and BB
of six points.

Another test is performed on our department map of size
52 m × 15 m, recorded at resolution R = 10, which is a
commonly used resolution for a gridmap of the real-world
environment where the 0.5-m wide robot moves, see Fig. 15.
Three planned paths are calculated with the length of BB
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equal to 0.25 m, and with three different start positions
noted by o-mark and one common goal position noted by
�-mark.

V. CONCLUSION

HE∗ planner with a guaranteed completeness is proposed.
It produces smooth paths with a continuous curvature that the
wheeled robot can easily follow. The motion primitives used
are based on the fifth-order BB curves which are defined in
a way to preserve continuity in C2 as well as keeping a good
search expansion at path planning. They are not fixed as their
shape can easily adapt the length and the orientation change
according to the used heuristics. This results in a shorter,
smoother, and easily followed path obtained at a lower com-
putational complexity compared to the case of preset and fixed
set of motion primitives. The resulting smooth path enables a
faster robot motion as the robot does not need to slow down
to such an extent or even stop before making sharper turns.
To obtain a fast but still safe and feasible robot tracking of a
planned path we computed an optimal velocity profile accord-
ing to maximal acceleration and velocity constraints. This also
enables an estimation of the minimal required time for the
robot to drive along the path. The proposed approaches were
tested by several experiments and compared to the state-of-the-
art motion planner in terms of a path length, traveling time
which implicitly depends on the curvature of the path, and
of the algorithmic complexity measured by a number of the
searched nodes. In most of the cases, HE∗ produces shorter as
well as faster trajectories at a much lower computational com-
plexity. The obtained path is given parametrically and is not
snapped to the discrete grid as is usually the case with most
deterministic motion-primitives-based planners. This means
that HE∗ can find good quality paths even at a rougher resolu-
tion of its heuristic part. Future challenges will deal with the
integration of the path following the controller and the driv-
able path replanning to efficiently account for changes in the
environment.
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[46] M. Lepetič, G. Klančar, I. Škrjanc, D. Matko, and B. Potočnik, “Time
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